In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila.
نویسندگان
چکیده
The dorsoventral regulatory gene pathway (spätzle/Toll/cactus) controls the expression of several antimicrobial genes during the immune response of Drosophila. This regulatory cascade shows striking similarities with the cytokine-induced activation cascade of NF-kappaB during the inflammatory response in mammals. Here, we have studied the regulation of the IkappaB homologue Cactus in the fat body during the immune response. We observe that the cactus gene is up-regulated in response to immune challenge. Interestingly, the expression of the cactus gene is controlled by the spätzle/Toll/cactus gene pathway, indicating that the cactus gene is autoregulated. We also show that two Cactus isoforms are expressed in the cytoplasm of fat body cells and that they are rapidly degraded and resynthesized after immune challenge. This degradation is also dependent on the Toll signaling pathway. Altogether, our results underline the striking similarities between the regulation of IkappaB and cactus during the immune response.
منابع مشابه
WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity.
Regulating the nuclear factor-kappaB (NF-kappaB) family of transcription factors is of critical importance to animals, with consequences of misregulation that include cancer, chronic inflammatory diseases and developmental defects. Studies in Drosophila melanogaster have proved fruitful in determining the signals used to control NF-kappaB proteins, beginning with the discovery that the Toll/NF-...
متن کاملCalpain A modulates Toll responses by limited Cactus/IκB proteolysis
Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (...
متن کاملA gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo.
Dorsoventral polarity in the Drosophila embryo is established by a signaling pathway active on the ventral and ventrolateral surfaces of the embryo. Signal transduction via the protein kinase Pelle frees the Rel-related protein Dorsal from its cytoplasmic inhibitor Cactus, allowing Dorsal to translocate into ventral and ventrolateral nuclei and direct gene expression. Here, we show by immunoche...
متن کاملGenome-wide RNA interference in Drosophila cells identifies G protein-coupled receptor kinase 2 as a conserved regulator of NF-kappaB signaling.
Because NF-kappaB signaling pathways are highly conserved in evolution, the fruit fly Drosophila melanogaster provides a good model to study these cascades. We carried out an RNA interference (RNAi)-based genome-wide in vitro reporter assay screen in Drosophila for components of NF-kappaB pathways. We analyzed 16,025 dsRNA-treatments and identified 10 novel NF-kappaB regulators. Of these, nine ...
متن کاملThe Ca2+-dependent protease Calpain A regulates Cactus/IκB levels during Drosophila development in response to maternal Dpp signals
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 273 17 شماره
صفحات -
تاریخ انتشار 1998